Perfluoroalkyl-thwarted Rearrangement of Quinol Esters.
Formation of Catechol Derivatives via 1,3-Migration of Acyloxyl Group

Hitomi SUZUKI, * Yasukazu SHIRAISHI, Kazuhiro SHIMOKAWA, † and Hidemitsu UNO*

Department of Chemistry, Faculty of Science,
Advanced Instrumentation Center for Chemical Analysis,
Ehime University, Bunkyo-cho, Matsuyama 790

†Research and Development Department, Chemical Division,
Daikin Industries, Ltd., Nishi Hitotsuya, Settsu 566

Treatment of 4-perfluoroalkyl-4-quinols with acetic anhydride-sulfuric acid was found to lead to 1,2- and 1,3-migration of acetoxyl group in initially formed quinol acetates followed by aromatization to give a mixture of 4-perfluoroalkylresorcinol diacetate and 4-perfluoroalkylcatechol diacetate.

On treatment with sulfuric acid in aqueous methanol, 4-alkyl-4-hydroxy-2,5-cyclohexadienones ($\underline{1}$; 4-alkyl-4-quinols) undergo rearrangement followed by aromatization to yield alkylhydroquinones $\underline{2}$. The reaction has been known as the quinol rearrangement.¹⁾ In acetic anhydride-sulfuric acid, the reaction takes another course to afford 4-alkylresorcinol diacetate $\underline{8}$ via the 1,2-migration of an ester group in initially formed acetate $\underline{3}$. Acyloxyl group usually migrates in preference to alkyl group.³⁾ Perfluoroalkyl group attached to the cation center is known to destabilize a carbenium ion enormously, 4 , and forestall the Wagner-Meerwein type rearrangement which proceeds via a cation intermediate.⁶⁾ Therefore, it is natural concequence to expect that 4-perfluoroalkyl-4-quinonls $\underline{1a}$ - \underline{c} will rearrange in acetic anhydride-sulfuric acid to give 4-perfluoroalkylresorcinol diacetate $\underline{8}$ as a single product. This was found not necessarily to be the case, however. We wish to report herein the first example of the acid-catalyzed conversion of quinols into catechol derivatives via the 1,3-acetoxyl migration.

When quinol $\underline{1a}$ or its ester $\underline{3a}$ was stirred in acetic anhydride containing sulfuric acid at room temperature overnight, two products were obtained as an intimate 1:1 mixture in 98-100% yields. Both compounds had the same composition $C_{14}H_{9}O_{4}F_{9}$, thus to be isomeric each other. One compound was identified as the expected 4-perfluorobutylresorcinol diacetate ($\underline{8a}$) on the basis of ^{1}H , ^{13}C , and ^{19}F NMR spectra as well as by its conversion to 4-perfluorobutanoylresorcinol ($\underline{13}$). The structure of diacetate $\underline{8a}$ was unambiguously established by COSY ($^{1}H_{13}C$) and 2D-INADEQUATE ($^{13}C_{1$

128 Chemistry Letters, 1988

Thus, when the mixture of rearranged products $\underline{6a}$ and $\underline{8a}$ was stirred with KOH in THF-methanol at room temperature, cleavage of ester groups occurred with simultaneous methanolysis of perfluorobutyl group to produce acetals $\underline{9}$ and $\underline{10}$ which could be separated by chromatography on silica gel. On refluxing in aqueous methanol containing p-toluenesulfonic acid, the latter compound was deacetalized to give ketone $\underline{13}$. Treatment of the former compound with ammonium cerium(IV) nitrate in acetonitrile led to o-benzoquinone $\underline{11}$, while prolonged heating of $\underline{9}$ with 2,2-dimethoxypropane in benzene under reflux furnished cyclic acetal $\underline{12}$, confirming the vicinal disposition of two hydroxyl groups on aromatic ring. 7)

Other quinols $\underline{\mathbf{1b}} - \underline{\mathbf{c}}$ behaved similarly toward acid catalyst to give a mixture of resorcinol diacetate $\underline{\mathbf{8b}} - \underline{\mathbf{c}}$ and catechol diacetate $\underline{\mathbf{6b}} - \underline{\mathbf{c}}$ in 90-95% yields. The former predominated only slightly over the latter, and ratios of rearranged products $\mathbf{6/8}$ were nearly the same in every case examined.

The mechanism of the quinol-to-catechol rearrangement remains to be clarified. One possible explanation is depicted in Scheme 1; in acid solution quinol acetate $\underline{3}$ is acetylated to form benzenium ion $\underline{4}$, in which acetoxyl group undergoes 1,3- and 1,2-migration to give isomeric ions $\underline{5}$ and $\underline{7}$, respectively. These ions lose proton to afford $\underline{6}$ and $\underline{8}$. Ion $\underline{5}$ could be derived from $\underline{4}$ by direct 1,3-transfer⁸) or by successive 1,2-shifts of acetoxyl group. Presumably, more efficient stabilization by acetoxyl groups and less effective destabilization by perfluoroalkyl group of the cationic intermediate $\underline{5}$, as compared with those of isomeric ion $\underline{7}$, would be responsible for the unexpected formation of 4-perfluoroalkylcatechols $\underline{6}$. Hydroquinone derivatives which should arise from the Wagner-Meerwein type shift of perfluoroalkyl group, could not be detected in the product mixtures. Although perfluoroalkyl groups can exchange their relative positions on aromatic ring through the valence-bond isomerism under photochemical conditions, $\underline{9}$) we are not aware of any reports yet on the 1,2-shift of these groups under acid conditions.

Chemistry Letters, 1988

Perfluoroalkylquinols $\underline{1a-c}$ were prepared by the reaction of perfluoroalkyllithium, 10,11) generated in situ from perfluoroalkyl iodide and methyllithium, with benzoquinone in ether at -78 °C and subsequent aqueous work-up. In this reaction only 1,2-addition product $\underline{1}$ was obtained; many attemps to realize 1,4-addition failed.

In summary, we have shown for the first time that 4-perfluoroalkyl-4-quinols can rearrange under acid conditions to furnish 4-perfluoroalkylcatechol derivatives. Our finding provides an interesting exception to the usual expectation that quinols rearrange to resorcinols and/or hydroquinones.

References

- 1) W. Metlesics, F. Wesseley, and H. Budzikiewicz, Tetrahedron, 6, 345 (1959).
- 2) S. Goodwin and B. Witkop, J. Am. Chem. Soc., <u>79</u>, 179 (1957).
- 3) E. Hecker and E. Meyer, Chem. Ber., 97, 1926, 1940 (1964).
- 4) M. N. Paddon-Row, C. Santiago, and K. N. Houk, J. Am. Chem. Soc., <u>102</u>, 6561 (1980).
- 5) K. M. Koshy and T. T. Tidwell, J. Am. Chem. Soc., <u>102</u>, 1261 (1980).
- 6) W. Kirmse, U. Mrotzeck, and R. Siegfied, Angew. Chem., Int. Ed. Engl., 24, 55 (1985).
- 7) Satisfactory elemental analyses and/or exact mass molecular weights were obtained for all new compounds. In all cases, 1 H (270 MHz), 13 C (67.9 MHz), and 19 F (254 MHz) NMR data (CDCl $_{3}$) were consistent with assigned structures.

130 Chemistry Letters, 1988

Spectral data of selected compounds are as follows.

Compounds $\underline{6a} + \underline{8a}$: ¹H $\delta = 2.28$, 2.31, 2.31, 2.31 (4 acetyl CH₃), 7.10 ($\underline{8a} - H^2$, d, J=2.5 Hz), 7.16 (8a-H⁶, dd, J=8.9, 2.5 Hz), 7.37 (6a-H⁶, d, J=8.5 Hz), 7.46 $(\underline{6a}-H^3, d, J=2.1 Hz), 7.49 (\underline{6a}-H^5, dd, J=8.5, 2.1 Hz), and 7.61 (\underline{8a}-H^5, d,$ J=8.9 Hz); 13 C δ =19.9, 20.0, 20.0, 20.4 (4 acetyl CH₃), 108.9 (both $\underline{C}F_2CF_3$, tm, $J_{CF}=269 \text{ Hz}$), 110.2 (ArCF₂CF₂, ttt, $J_{CF}=265$, 40, 31 Hz), 110.4 (Ar'CF₂CF₂, ttt, $J_{CF}=265$, 53, 44 Hz), 115.1 (Ar' CF_2 , tt, $J_{CF}=257$, 32 Hz), 115.5 (Ar CF_2 , tt, $J_{CF}=258$, 48 Hz), 117.4 (both CF_3 , qt, $J_{CF}=287$, 33 Hz), 118.0 (8a- C^4 , t, $J_{CF}=23 \text{ Hz}$), 118.4 (8a-C²), 119.3 (8a-C⁶), 122.6 (6a-C³ t, $J_{CF}=7 \text{ Hz}$), 124.0 $(\underline{6a} - C^6)$, 125.0 $(\underline{6a} - C^5)$, t, $J_{CF} = 7$ Hz), 126.8 $(\underline{6a} - C^4)$, t, $J_{CF} = 25$ Hz), 129.5 $(\underline{8a} - C^4)$ c^5 , t, $J_{CF}=8$ Hz), 142.4 ($\underline{6a}-c^2$), 145.3 ($\underline{6a}-c^1$, t, $J_{CF}=2$ Hz), 149.6 ($\underline{8a}-c^3$, t, $J_{CF}=3$ Hz), 154.0 ($8a-C^4$, t, $J_{CF}=1$ Hz), 167.4, 167.5, 168.0, and 168.2 (4 acetyl CO); 19 F $\delta = -81.46$ (8a-3F, tt, J=10, 2 Hz), -81.53 (6a-3F, tt, J=10, 3) Hz), -108.74 (<u>8a</u>-2F, m), -110.75 (<u>6a</u>-2f, m), -122.42 (<u>8a</u>-2F, m), -122.77 (<u>6a</u>-2F, m), -125.90 ($\underline{6a}$ -2F, m), and -126.26 ($\underline{8a}$ -2F, m); IR (neat) 1784 (vs), 1426 (s), 1374 (s), 1354 (s), 1192 (vs), 1134 (vs), and 1016 cm⁻¹ (m). Compound $\underline{9}$: ¹H δ =3.35 (6H, s), 6.2 (2H, br-s), 6.88 (1H, d, J=8.5 Hz), 7.06 (1H, d, J=8.5 Hz), and 7.16 (1H, s); 13 C $\delta = 50.7$, 99.6 (t, J_{CE}=21 Hz), 114.9, 116.0, 122.0, 126.4, 142.9, and 144.7; 19 F $\delta = -81.48$ (3F, t, J=10 Hz), -117.77 (2F, m), and -125.22 (2F, m); IR (neat) 3392 (vs), 1614 (s), 1526 (s), 1442 (s), 1344 (s), 1290 (vs), 1234 (vs), 1118 (vs), and 1072 cm⁻¹ (vs). Compound 10: 1 H $\delta = 3.48$ (6H, s), 6.44 (2H, m), 7.13 (1H, d, J=9.5 Hz), 7.23 (1H, s), and 8.58 (1H, s); 13 C $\delta = 51.0$, 103.1 (t, $J_{CF} = 22$ Hz), 104.3, 107.8, 108.1, 131.1, 158.0, and 158.8; 19 F $\delta = -81.32$ (3F, t, J=12 Hz), -118.04 (2F, m), and -125.72 (2F, m); IR (neat) 3408 (vs), 1630 (s), 1602 (s), 1514 (s), 1476 (s), 1346 (s), 1228 (vs), 1150 (vs), 1124 (vs), and 1058 cm^{-1} (vs). Compound $\underline{11}$: ¹H δ =3.48 (6H, t, J_{HF}=1.4 Hz), 6.42 (1H, d, J=10.4 Hz), 6.70 (1H, d, J=2.1 Hz), and 7.24 (1H, dd, J=10.4, 2.1 Hz); 13 C δ =51.3, 98.5 (t, J_{CF}=22 Hz), 129.4, 131.7, 138.1 (m), 146.1, 179.26, and 179.3; 19 F δ =-81.17 (3F, t, J=11Hz), -117.07 (2F, m), and -124.99 (2F,m); IR (neat) 1694 (s), 1674 (vs), 1402 (s), 1346 (s), 1228 (vs), 1128 (vs), 1084 (vs), and 996 cm^{-1} (vs). Compound 12: 1 H δ =1.68 (6H, s), 3.38 (3H, t, J=1.5 Hz), 6.71 (1H, d, J=8.2 Hz), 6.96 (1H, s), 7.04 (1H, d, J=8.2 Hz); 13 C δ =25.8, 50.8, 99.8 (t, J_{CE}=20 Hz), 107.4, 108.8, 118.4, 122.2, 126.5, 147.3, and 148.3; $^{19}{
m F}$ δ =-81.37 (3F, t, J=11Hz), -117.96 (2F, m), and -125.22 (2F, m); IR (neat) 1496 (s), 1444 (s), 1380 (s), 1342 (s), 1258 (vs), 1230 (vs), 1122 (vs), and 1076 (s). In 13 C-NMR spectra of 9-12, perfluoroalkyl carbons could not be assigned.

- 8) For direct 1,3-migration of benzyl and allyl groups, see: B. Miller, Acc. Chem. Res., 8, 245 (1975); J. Am. Chem. Soc., 96, 7155 (1974); L. S. Hegedus and B. R. Evans, ibid., 100, 3461 (1978).
- 9) M. G. Barlow, R. N. Haszeldine, and R. Hubbard, J. Chem. Soc., Chem. Commun., 1969, 202.
- 10) P. G. Gassman and N. J. O'Reilly, Tetrahedron Lett., <u>26</u>, 5243 (1985); J. Org. Chem., <u>52</u>, 2481 (1987).
- 11) H. Uno, Y. Shiraishi, K. Shimokawa, and H. Suzuki, Chem. Lett., 1987, 115 (Received October 19, 1987)